ORGANIC AND BIOLOGICAL CHEMISTRY

[Contribution from the Department of Chemistry, Wayne State University, Detroit 2, Michigan]
 Organic Quantum Chemistry. VII. Calculation of the Near-Ultraviolet Spectra of Polyolefins ${ }^{1,2}$

By Norman L. Allinger and Mary Ann Miller ${ }^{3}$
Received January 29, 1964

Abstract

The π-electronic spectra have been calculated for a number of dienes and trienes, conjugated, unconjugated. and cross-conjugated, utilizing the basic method of Pariser and Parr but with modification of the numerical values of certain of the required integrals. Butadiene was studied as the s-cis and s-trans conformers, and for various rotational arrangements intermediate between these extremes. It was usually found possible to calculate the wave lengths of the observable transitions to within $5-10 \mathrm{~m} \mu$, and to obtain reasonable estimates of the oscillator strengths.

Introduction

The ultraviolet spectra of organic compounds have been of considerable use to organic chemists from the point of view of structural determination. ${ }^{4}$ There are available empirical rules by which the spectrum of a compound which belongs to one of certain selected classes can be predicted with a high degree of accuracy. Woodward's rules ${ }^{5}$ offer a very practical method for the prediction of the absorption maximum in the ultraviolet spectrum of a conjugated polyene, as long as it belongs to a rather select, almost planar, noncross-conjugated system containing bond angles close to normal. There are any number of interesting compounds available which do not possess all of the appropriate characteristics, and for which the simple rules are inapplicable. We have therefore considered the very practical problem of the prediction of the spectra of olefins in general: conjugated, unconjugated, or cross-conjugated, and possessing any number of double bonds in any spatial orientation. There is available a theoretical method for the calculation of such spectra, which was developed by Pariser and Parr, ${ }^{6,7}$ and which was applied by them to a few simple systems. The quantum mechanical calculation of the electronic properties of even a simple polyene would be prohibitively laborious unless various approximations were made. The Pariser-Parr method, which has been relatively accurate in the limited area to which it has been applied, makes two kinds of approximations. One is the wholesale neglect of large numbers of integrals which enter into the calculation on the basis that they are quite small. The second approximation, which in part compensates for errors introduced by the first, is to use empirical rather than theoretical values for certain specified integrals.

The Pariser-Parr method has not been extensively applied to polyenes previously, ${ }^{7-10}$ and there is considerable uncertainty as to what kind of accuracy is to be

[^0]expected from the calculations. We have therefore selected a number of examples of olefins for which experimental data are available for comparison, and which contain all of the different kinds of features in which one is interested. In this paper we will discuss only the olefinic portion of the system; the effect of substituents such as methyl groups or alkoxyl groups will be deferred to a later paper. The compounds for which calculations have actually been made in the present work are butadiene (II) (as a function of the rotational angle about the $\mathrm{C}-\mathrm{C}$ single bond), 1,3,5-hexatriene (III) (in all of its planar conformations), bicycloheptadiene (or norbornadiene) (IV), bicyclo [2.2.2]-2,, 7 - octatriene (V), tetrahydroacepentylene (VII), and sym-cis,cis,cis-1,4,7-cyclononatriene (VI).

II

IV

VI

V

VII

Mathematical Method

The π-electron approximation is used throughout the present work, including for the nonplanar systems in which its validity is much less certain than for the planar systems. This approximation is necessary at this time if the problems are to be held to manageable size, and its validity will ultimately be found in the agreement between experimental and calculated quantities. Only the π-electrons are treated explicitly; the σ electrons together with the nuclei form the "core" or the field in which the π-electrons move. Thus, for a molecule with $n \pi$ electrons, moving in the field of the core, the π-electron Hamiltonian operator is written

$$
\begin{equation*}
\mathscr{F}=\sum_{i=1}^{n} \mathbf{H}_{\text {core }}(\mathrm{i})+1 / 2 \sum_{\substack{i, j \\ i \neq j}}\left(e^{2} / r_{\mathrm{ij}}\right) \tag{1}
\end{equation*}
$$

The n-electron system wave functions are built from normalized antisymmetrized product functions, expressed as Slater determinants. The molecular orbitals (MO) are taken to be ortho-
normal combinations of the atomic orbitals (AO) involved in the system being treated.

$$
\begin{equation*}
\phi_{\mathrm{i}}=\sum_{\mathrm{p}} c_{\mathrm{ip}} \chi_{\mathrm{p}} \tag{2}
\end{equation*}
$$

Simple LCAO molecular orbitals (Appendix II) have been used in the present work. An electronic state is then given by a linear combination of the appropriate configurations

$$
\begin{equation*}
\Psi=A_{1} \Phi_{1}+A_{2} \Phi_{2}+\ldots+A_{\Lambda} \Phi_{\Lambda}+\ldots \tag{3}
\end{equation*}
$$

and the energy E of the state Ψ is found from eq. 4 .

$$
\begin{equation*}
E=\int \Psi \mathfrak{F C} \Psi \mathrm{d} V \tag{4}
\end{equation*}
$$

In matrix notation, the energy is given by the diagonal elements of the diagonal matrix E , where

$$
\mathrm{AHA}^{-1}=\mathrm{E}
$$

A is a unitary matrix and H is the Hamiltonian matrix with individual matrix elements

$$
\begin{equation*}
\mathcal{H}_{\mathrm{mn}}=\int \Phi_{\mathrm{m}} \mathfrak{H} \Phi_{\mathrm{n}} \mathrm{~d} V \tag{5}
\end{equation*}
$$

The integrals $\mathcal{K}_{\text {ma }}$ are expressed in terms of core integrals

$$
\begin{equation*}
I_{\mathrm{mn}}=\int \phi_{\mathrm{m}}^{*}(1) \mathbf{H}_{\mathrm{core}}(1) \phi_{\mathrm{n}}(1) \mathrm{d} V_{1} \tag{6}
\end{equation*}
$$

and electronic repulsion integrals
$(m k \mid n l)=$

$$
\begin{equation*}
\iint \phi_{\mathrm{m}}^{*}(1) \phi_{\mathrm{n}}^{*}(2)\left(e^{2} / r_{12}\right) \phi_{\mathbf{k}}(1) \phi_{1}(2) \mathrm{d} V \tag{7}
\end{equation*}
$$

These molecular integrals are expressed in terms of atomic integrals using eq. 2

$$
\begin{equation*}
I_{\mathrm{ij}}=\sum_{\mathrm{p}} \sum_{\mathrm{q}} c_{\mathrm{ip}}^{*} c_{\mathrm{jq}} H_{\mathrm{pq}}^{\text {core }} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
H_{\mathrm{pq}}^{\text {core }}=\int \chi_{\mathrm{p}}^{*}(1) \mathrm{H}_{\text {core }}(1) \chi_{\mathrm{q}}(1) \mathrm{d} V_{1} \tag{9}
\end{equation*}
$$

The core integrals are then obtained as follows, assuming forma neglect of differential overlap

$$
\begin{align*}
& a \equiv H_{\mathrm{pp}}^{\text {core }}=\int \chi_{\mathrm{p}}^{*}(1) \mathrm{H}_{\mathrm{core}}(1) \chi_{\mathrm{p}}(1) \mathrm{d} V_{1} \tag{10}\\
& \beta \equiv H_{\mathrm{p} \mathrm{c}}^{\text {core }}=\int \chi_{\mathrm{p}}^{*}(1) \mathrm{H}_{\mathrm{core}}(1) \chi_{\mathrm{q}}(1) \mathrm{d} V_{1} \tag{11}
\end{align*}
$$

Employing the $Z D O$ approximation, the electronic repulsion integrals ($i j \mid k l$) are obtained as linear combinations of integrals over the atomic orbitals of the form ($p p \mid q q$) where

$$
\begin{array}{r}
\gamma_{\mathrm{pq}} \equiv(p p \mid q q)=\iint \chi_{\mathrm{p}}^{*}(1) \chi_{\mathrm{q}}^{*}(2)\left(e^{2} / r_{12}\right) \times \\
\chi_{\mathrm{p}}(1) \chi_{\mathrm{q}}(2) \mathrm{d} V_{1} \mathrm{~d} V_{2} \tag{12}
\end{array}
$$

The key to the success of the method now depends on the empirical evaluation of $a_{p}, \beta_{p q}$, and $\gamma_{p q}$, and this evaluation is discussed below. Since we are using Hückel type ${ }^{11}$ rather than self-consistent-field molecular orbitals, it is possible to improve the orbitals by configuration interaction among the ground and singly-excited configurations. The configuration interaction treatment has been limited to, and includes all of, the singly excited configurations, together with the ground configuration.

The intensities of the spectral transitions were calculated according to Mulliken and Rieke, ${ }^{12}$ simplified by the zero differential overlap approximation. For transitions between nondegenerate states described by wave functions ψ_{k} and ψ_{1}, the oscillator strength f is

$$
\begin{equation*}
f=1.085 \times 10^{11} \omega_{i=x, y, z} \sum_{i^{2}}^{2} \tag{13}
\end{equation*}
$$

where ω is the frequency of the transition in $\mathrm{cm} .^{-1}$ and

$$
\begin{equation*}
Q_{\mathrm{i}}=\int \Psi_{\mathrm{k}}^{*} i \Psi_{1} \mathrm{~d} V(i=x, y, z) \tag{14}
\end{equation*}
$$

where i is the algebraic sum of the i 's for the several electrons.

[^1]Evaluation of Atomic Integrals and Molecular Orbitals.-The integrals over atomic orbitals to be evaluated are the resonance integrals $\beta_{p q}$, the Coulomb attraction integrals α_{p}, and the Coulomb repulsion integrals $\gamma_{p q}$. The atomic orbitals are the nodeless Slater AO's ${ }^{13}$; for the Slater orbital exponent ζ, the enipirical value ${ }^{14} \zeta \mathrm{c}=1.59$ was used rather than the theoretical value (1.625).

While it is possible to calculate from the theoretical formula ${ }^{6}$ numerical values for the resonance integrals, such a calculation requires that approximations be made concerning the repulsion integrals contained in this formula. Thus there is considerable doubt as to the validity of the "theoretical" value obtained. Furthermore, the theoretical value is a function of the environment of the atom pair considered, and the calculation is tedious. We have therefore followed Pariser and Parr in assuming that the resonance integrals can be taken as constant between a given pair of atoms at a fixed distance, and independent of their environment. We have accepted the numerical value of $\beta=-2.402$ e.v. at $1.397 \AA$. in benzene, as previously described. ${ }^{1}$ For atons which are not directly bound together, the theoretical formula indicates that β falls off very rapidly with distance, and we have accepted the exponential relationship used previously (15). ${ }^{1}$ In principle the values obtained from this formnila

$$
\begin{equation*}
\beta(\mathrm{e} . \mathrm{v.})=-61.232 e^{-2.31813 r(\AA .)} \tag{15}
\end{equation*}
$$

should be increased slightly to account for $\sigma \sigma$ overlap if the orbitals are not parallel. For the molecules studied here the deviation from planarity is not great enough really to warrant attempting such a refinement for atoms not bound together. For atoms which are bound together, the exponential variation (15) makes β far too dependent on distance. Since it was found necessary to reduce empirically the one- and two-center repulsion integrals considerably below the theoretical value to account for electron correlation, and since the theoretical expression for β contains these integrals, ${ }^{6}$ a similar sort of reduction might be expected here. We have therefore elected to use the Mulliken relationship ${ }^{16}$ for β between bound atoms (16) where W is an appropriate

$$
\begin{equation*}
\beta={ }_{\mathrm{pq}} \beta_{0} \frac{1 / 2\left(W_{\mathrm{p}}+W_{\mathrm{q}}\right) A_{\mathrm{pq}}\left(S_{\mathrm{pq}} / 1+S_{\mathrm{pq}}\right)}{W_{0} A_{0}\left(S_{0} / 1+S_{0}\right)} \tag{16}
\end{equation*}
$$

atomic valence state ionization potential, S is the overlap integral, and A is an empirical constant dependent on the type of overlap (1.00 for $S_{\pi \pi}$, and 0.77 for $S_{\sigma \sigma}$). For the present work, since we are considering only double bonds between carbon atons and using benzene as our standard, this reduces to

$$
\begin{equation*}
\beta_{\mathrm{pq}}(\mathrm{e} . \mathrm{v.})=-11.712 \frac{S_{\pi \pi}}{1+S_{\pi \pi}} \tag{17}
\end{equation*}
$$

Coulomb Attraction Integrals.- In terms of atomic orbitals the theoretical expression for the one-center Coulomb attraction integral α is

$$
\begin{equation*}
\alpha_{\mathrm{p}}=W_{\mathrm{p}}-\sum_{p \neq q}[(p p \mid q q)+(q: p p)]-\sum_{r}(r: p p) \tag{18}
\end{equation*}
$$

where ($p p \mid q q$) are the Coulomb repulsion integrals $\gamma_{p q}$, and ($q: p p$) and $(r: p p)$ are Coulomb penetration integrals between χ_{p} and neutral atoms q and r. These latter terms are small $[(q: p p) \cong$ $0.1 \gamma_{p q}$ for p and q neighbors, much less for p, q nonneighbors], and have little effect on the calculated spectrum of an all carbon system. Neglecting penetration integrals, the α 's are obtained from

$$
\begin{equation*}
\alpha_{p}(\mathrm{e} . \mathrm{v} .)=-11.22-\sum_{p \neq q} \gamma_{\mathrm{pq}} \tag{19}
\end{equation*}
$$

Coulomb Repulsion Integrals.-These integrals are available directly from tables, ${ }^{16}$ and if the π-orbitals are not parallel, they should be factored into $\pi, \bar{\pi}$, and σ components. At distances

[^2]of less than $2.408 \AA$. it is necessary to reduce the theoretical values empirically in order to account for electron correlation. This was done earlier following the method suggested by Schiess and Pullman. ${ }^{8}$ The equation obtained ${ }^{1}$ was
\[

$$
\begin{align*}
\gamma_{\mathrm{pq}}(\mathrm{e} . \mathrm{v} .)=11.080- & 3.92327 r+ \\
& 0.69786 r^{2}(r \leq 2.408 \AA) \tag{20}
\end{align*}
$$
\]

No attempt has been made to factor repulsion integrals at these close distances since the empirical curve is so arbitrary as it is.

Computer Programs.-The calculations were done on an IBM 7070 computer using programs written in Fortran II (Full Fortran). The program sequence begins with the diagonalization of the matrix given in Appendix II. The resulting eigenvectors, arranged in order of decreasing eigenvalue, are the MO coefficients c_{p}. These, together with the matrices Γ and $H_{\text {core }}$, are the input data for a series of programs which calculate in order the quantities in eq. $8,21-28 .^{7}$

$$
\begin{gather*}
I_{\mathrm{i}}=\sum_{p, q=1}^{n} c_{\mathrm{ip}} c_{\mathrm{iq}} H_{\mathrm{pq}}^{\mathrm{core}} \tag{8}\\
J_{\mathrm{ij}}=\sum_{p, q} c_{\mathrm{ip}} c_{\mathrm{ip}} c_{\mathrm{jq}} c_{\mathrm{jq}} \gamma_{\mathrm{pq}} \tag{21}\\
K_{\mathrm{ij}}=\sum_{p, q} c_{\mathrm{ip}} c_{\mathrm{iq}} c_{\mathrm{jp}} c_{\mathrm{jq}} \gamma_{\mathrm{pq}} \tag{22}\\
V_{0}=2 \sum_{i=1}^{f} I_{\mathrm{i}}+\sum_{i, j}\left(2 J_{\mathrm{ij}}-K_{\mathrm{ij}}\right)+\sum_{p>q} \gamma_{\mathrm{pq}} \tag{23}\\
V_{\mathrm{ik}}=V_{0}+I_{\mathrm{k}}-I_{\mathrm{i}}+J_{\mathrm{ik}}+K_{\mathrm{ik}}-J_{\mathrm{ii}}- \\
\sum_{f \neq i}\left(2 J_{\mathrm{fi}}-2 J_{\mathrm{fk}}-K_{\mathrm{fi}}+K_{\mathrm{fk}}\right) \tag{24}
\end{gather*}
$$

The subscript f in (23) and (24) refers to orbitals which are doubly occupied in the ground state. (V_{0} is corrected for internuclear repulsion energy by the third summation in eq. 23 . $)^{179}$

$$
\begin{align*}
\left\langle V_{0} \mid V_{\mathrm{ik}}\right\rangle=2^{1 / 2}\left\{I_{\mathrm{ik}}+\right. & (i i \mid i k)+ \\
& \left.\sum_{f \neq i, k}[2(f f i k)-(f i f k)]\right\} \tag{25}
\end{align*}
$$

The electronic integrals are evaluated as above, e.g.,

$$
\begin{gather*}
(12 \mid 34)=\sum_{p, q} c_{1 \mathrm{p}} c_{2 \mathrm{p}} c_{3 \mathrm{q}} c_{\mathrm{qq}} \gamma_{\mathrm{pq}} \\
\left\langle V_{\mathrm{ik}} \mid V_{\mathrm{jk}}\right\rangle=-I_{\mathrm{ij}}+2(i k \mid j k)-(i j \mid i i)-(i j \mid k k)- \\
(i j \mid j j)-\sum_{f \neq i, j}[2(f \mid i j)-(f \mid f j)] \tag{26}\\
\left\langle V_{\mathrm{ik}} \mid V_{\mathrm{j} 1}\right\rangle=2(i k \mid j l)-(i j \mid k l) \tag{27}\\
\left\langle V_{\mathrm{ik}} \mid V_{\mathrm{il} 1}\right\rangle=I_{\mathrm{k} 1}+(i k \mid i l)+(i i \mid k l)+ \\
\sum_{f \neq k, l, i}[2(f \mid k l)-(f k \mid f)] \tag{28}
\end{gather*}
$$

The configuration energies and configuration interaction matrix elements are then arranged to give the Hamiltonian matrix H , which is diagonalized to give the state energies (eigenvalues) and the configuration coefficients $A_{\mathrm{a}} \mathrm{jk}$ (eigenvectors). The oscillator strengths (eq. 13) are evaluated according to the method given by Pariser ${ }^{7}$ from the state energies, configuration coefficients, molecular orbitals, and nuclear coordinates.

Discussion

The calculated benzene spectrum ${ }^{1}$ was adjusted empirically to fit the observed spectrum, so the agreement between the two is quite good. Since there are a number of empirical adjustments which could have been made which would have given a satisfactory calculated benzene spectrum, there is no guarantee that it will be possible to fit results for other compounds of interest using the same methods and numerical quantities as used for benzene. There are, moreover, additional
factors peculiar to the different compounds which are not encountered in the benzene system, and which may be taken into account in varying ways. The inclusion of resonance integrals only between neighbors, for example, is not a clear cut concept in compounds such as norbornadiene. Thus for the sake of selfconsistency, we decided to omit resonance integrals between nonneighbors in the conjugated systems, but to include them (evaluated by the exponential formula) for those nonconjugated systems where the internuclear distances are between the benzene 1,3 - and 1,4 -distances.

The method of evaluating data described above appears to us to be the most logical, but other possibilities were also examined: for example, for trans-butadiene the exponential formula was used to evaluate β_{12} and β_{23}, with the other β 's being set equal to zero. The results were quite unsatisfactory. When the Mulliken relationship was used for all resonance integrals (β_{12}, β_{23}, β_{13}, and β_{14}), the value for the low energy transition was satisfactory, but the second transition was in poor agreement with experiment. All of the pertinent numerical information is summarized in Appendices I and II.

The results of the calculation for butadiene as a function of the dihedral angle about the 2,3 -bond are presented in Table I. Certain features of interest from the calculations can be seen in this table, as follows: the cis isomer should show absorption at longer wave length ($230 \mathrm{~m} \mu$) than the trans ($212 \mathrm{~m} \mu$), and this absorption should be only about half as intense as that of the trans. As the dihedral angle at the 2,3-bond changes from 0 to 90° to 180° the wave length of the $\mathrm{N} \rightarrow \mathrm{V}_{1}$ absorption drops from 230 to 182 and then rises to $212 \mathrm{~m} \mu$. At the same time the oscillator strength goes from 0.5 to 0 to 1 . The qualitative features calculated here are in good agreement with those observed from a study of more complicated systems containing butadiene structures with various 2,3 -dihedral angles.

Table I
Calculated Transition Energies and Oscillator Strengths for Butadiene (II) as a Function of the Dihedral Angle Di.

hedral angle	$\sim \mathrm{N} \rightarrow \mathrm{V}_{1}-$		$\sim \mathrm{N} \rightarrow \mathrm{V}_{2}-$		$\rightarrow \mathrm{N} \rightarrow \mathrm{V}_{3}-$		$\rightarrow \mathrm{N} \rightarrow \mathrm{V}_{4}-$	
θ, deg.	$\lambda, \mathrm{m} \mu$	f	$\lambda, \mathrm{m} \mu$	f	$\lambda . m \mu$	f	$\lambda, \mathrm{m} \mu$	+
0	230	0.465	182	0.044	161	0.703	133	10^{-4}
30	210	463	182	. 040	164	. 664	137	0.021
60	201	. 392	183	. 015	167	. 571	154	159
85	183	089	182	. 001	170	429	170	601
90	182	000	182	. 000	170	. 394	170	. 725
95	183	091	181	001	171	358	169	673
120	195	581	180	019	172	171	150	391
150	204	908	179	017	171	031	134	292
180	212	997	179	000	170	000	129	292

A study of the ground state of butadiene $(\theta=0,90$, and 180°) by the SCF method was carried out recently ${ }^{17 \mathrm{~b}}$ and complements the present work. The methods and numerical values used in the two studies were quite different, yet conclusions from the point of overlap between them (the variation of the energy of the π system with θ) are similar, namely that the s-cis- and
(17) (a) R. G. Parr and R. Pariser, J. Chem. Phys., 23, 711 (1955); (b) I. Fischer, Hjalmars, paper presented at the Winter Institute in Quantum Chemistry and Solid State Physics, Sanibel Island, Fla., Jan., 1962. The authors are indebted to Dr. Fischer. Hjalmars for a preprint of this paper.
s-trans systems have similar π-energies, while the perpendicular form is some $10 \mathrm{kcal} . /$ mole higher.

Recently the synthesis of 2,3 -di- t-butyl-1,3-butadiene (VIII) was reported. ${ }^{18}$ Due to the steric requirements of the t-butyl groups, it was expected that this com-

pound would exist in the twisted form, corresponding to θ equals 90°. Nuclear magnetic resonance studies confirmed this conformation. In the vapor phase, VIII was reported to show a shoulder at $209 \mathrm{~m} \mu$ and the major peak at $185 \mathrm{~m} \mu$ in good agreement with our calculated value of $182 \mathrm{~m} \mu$ for 90°-II. (The shoulder at 209 was attributed to characteristic absorption of substituted ethylenes. ${ }^{19}$ Alternatively, it might be due to the presence of a small amount of a transoid conformation.)

The calculated oscillator strength for trans-butadiene appears to be too large by about a factor of 3 , but the ratios of the oscillator strengths as a function of dihedral angle appear to be about right. Since the oscillator strength is quite a sensitive function of the electron distribution, ${ }^{20}$ it is expected that there may be appreciable quantitative errors here, and the agreement is regarded as satisfactory. The agreement between the calculated and experimental ${ }^{21}$ values for the s-trans isomer is excellent, both for the $\mathrm{N} \rightarrow \mathrm{V}_{1}$ and $\mathrm{N} \rightarrow \mathrm{V}_{2}$ transitions: $\mathrm{N} \rightarrow \mathrm{V}_{1}$, calcd. 212, exptl. 209.4; $\mathrm{N} \rightarrow \mathrm{V}_{2}$, calcd. 175, exptl. 175.4. Since butadiene actually exists in the s-trans conformation, the spectrum of the s-cis conformer is not known. (There is experimental evidence ${ }^{22}$ which indicates that $3-7 \%$ of $c i s-$ II may be present at room temperature, but no ultraviolet absorption has been attributed to it.)

While the electronic spectrum of butadiene itself for $\theta \neq 180^{\circ}$ is not known, there are a number of substituted cisoid dienes available for comparison purposes. The $\mathrm{N} \rightarrow \mathrm{V}_{1}$ transition energies have been reported for cyclopentadiene, cyclohexadiene, cycloheptadiene, cyclooctadiene, and cyclononadiene. The spectra were measured in various solvents, and such values are generally found to be about $10 \mathrm{~m} \mu$ higher than in the vapor phase. ${ }^{23}$ From an examination of scale models it is possible to make a rather good estimate of the dihedral angle between the olefinic linkages for each of these compounds except the last. ${ }^{24}$ For each of these angles then, one can estimate by interpolation of the data in Table I where the butadiene linkage should absorb. The presence of the two methylene groups on the ends of the butadiene system will raise the value $10 \mathrm{~m} \mu$ above that which would be observed in the butadiene itself, and another 10$) \mathrm{m} \mu$ is added as a solvent correction. The calculated values thus obtained are listed in Table

[^3]II and compared with the experimental values for these compounds. It is noted that the calculated wave lengths for the cisoid dienes tend to be rather consistently about $12 \mathrm{~m} \mu$ lower (0.24 e.v. higher) than those observed, with the exception of cyclopentadiene.

Table II				
$N \rightarrow V_{1}$ Transition Wave Lengths of Conjugated Dienes as a Function of the Dihedral Angle				
Compound	$\begin{gathered} \theta,,^{2 j} \\ \text { deg. } \end{gathered}$	$\begin{aligned} & \lambda_{\mathrm{m}} \mu^{2 \xi} \\ & (\text { calcd. }) \end{aligned}$	$\begin{gathered} \lambda_{\mathrm{m} \mu} \\ (\text { expt1.) } \end{gathered}$	Ref.
s-trans-Butadiene	180	$212{ }^{27}$	$209.4{ }^{27}$	21
1,3-Cyclopentadiene	0	250	242	28
1,3-Cyclohexadiene	17	245	256.5	29
1,3-Cycloheptadiene	52	230	248	29
1,3-Cyclooctadiene	64	216	229	30
1,3-Cyclononadiene.	65	216	219.5	31
nonrigid, various possibili-	90	202		
ties from 65-110 ${ }^{\circ}$	110	211		

The transitions from the ground state to the two triplet states of lowest energy were also calculated for cisand trans-II and for IIIa, and are compared with observed values ${ }^{32}$ in Table III. The agreement here is rather poor, but since the empirically evaluated quantities used in the calculation were obtained from transitions to singlet states, this is not surprising. ${ }^{33}$ Hammond's work ${ }^{34}$ on the dimerization of dienes in the triplet state strongly suggests that the lowest triplet state should be lower for s-cis-butadiene than it is for the s-trans conformer, although cyclohexadiene itself is not an ideal model for the cis conformer. The energies calculated here are the same for the two conformers, but these values are of limited accuracy for reasons mentioned.

Table III
Calculated and Observed Triplet Transition Energies

			Calcd.
System	Transition	Obsd.	
cis-II	$\mathrm{N} \rightarrow \mathrm{T}_{1}$	2.26	3.0^{a}
	$\mathrm{~N} \rightarrow \mathrm{~T}_{2}$	3.87	\ldots
trans-II	$\mathrm{N} \rightarrow \mathrm{T}_{1}$	2.22	3.22
	$\mathrm{~N} \rightarrow \mathrm{~T}_{2}$	3.82	3.84
IIIa	$\mathrm{N} \rightarrow \mathrm{T}_{1}$	1.84	2.58
	$\mathrm{~N} \rightarrow \mathrm{~T}_{2}$	3.18	3.22

a This value is estimated from the value of cyclohexadiene (2.85 e.v. (ref. 32)) which must be corrected for nonplanarity and for substitution.

1,3-trans,5-Hexatriene (2-s-cis; 4-s-trans).-Both the liquid ${ }^{35,36}$ and vapor phase ${ }^{37,38}$ spectra of this compound have been reported. Fine structure is observed

[^4]
due to vibrational transitions. The center of gravity of the next to the longest wave length band (which is also the band of maximum extinction) occurs at $242 \mathrm{~m} \mu$ in the vapor phase and is taken as the transition energy for present purposes. The calculated value is in very good agreement with that observed. The oscillator strength is much greater than that of butadiene, as calculated. There are in addition to the above conformation lIIa four other planar conformations for the isomers of this molecule which are possible in principle: 1,3-cis,5-hexatriene(2 -s-trans; 4 -s-trans) (IIIb), 1,3trans, 5 -hexatriene (2 -s-cis; 4-s-trans) (IIIc), 1,3-cis, 5 hexatriene (2 -s-cis; 4-s-trans) (IIId), and 1,3-trans,5hexatriene (2 -s-cis; 4 -s-cis) (IIIe). While we do not expect to find significant amounts of these conformations present in this molecule under ordinary circumstances, they are electronic systems of types which we may expect to find in polycyclic molecules. The calculations have therefore been carried out for each of these conformations, and the results are summarized in Table IV. System IX, a typical cross-conjugated triene, was also examined.

Comparison of the calculated values in Table IV with experiment is necessarily indirect: while relatively simple systems (X, XI) with the triene confor-

[^5]mation of IIIa are known, in addition to IIIa and IIIb themselves, the only molecules containing the other conformations which are available for comparison with

experiment are complicated systems (mostly steroids) which contain other features in addition. The compounds judged to be the most closely related to the systems for which the calculations have been made and for which spectral data are available are listed in Table IV together with the wave length and extinction coefficient of the major observed maximum. To facilitate comparison with the calculated values, the "stripped chromophore" value for the basic polyene structure is obtained by subtracting from the observed maximum wave length increments according to Woodward's rules. From the wave length thus obtained an additional $15 \mathrm{~m}_{\mu}$ is subtracted to convert from solvent to the gas phase. These values are given as the "experimental' wave lengths in Table IV.

Comparison of the calculated and observed values in Table IV supports the conclusion drawn above for the dienes, i.e., that the calculated absorption wave length for each cis-diene system is too low by an amount corresponding to about 0.24 e.v. (about $14 \mathrm{~m} \mu$). Again the agreement is excellent for the all-trans systems, and the addition of $14 \mathrm{~m} \mu$ per cis-diene group (1 each in IIIc, IIId, and IV, 2 in IIIe) to the calculated values would bring the remaining systems into satisfactory agreement with experiment. The calculated oscillator strengths are also in generally good qualitative agreement with the observed extinction coefficients.

In the case of the cross-conjugated system IX, comparison with experiment is difficult, since the stripped chromophore value is questionable. The figures outside parentheses were obtained by correcting the observed value for solvent and substituents only; those inside parentheses are the observed value corrected
according to Woodward's rules, which are not really applicable here. The agreement of the former with the calculated values is probably fortuitous.

The stripped chromophore values of tachysterol and of vitamin D_{2} appear anomalous, disagreeing with both the calculated values and similar "observed" values and extinction coefficients. This disagreement can be accounted for in both cases, however. Considering the exocyclic double bond structure of vitamin D_{2}, the low value of the "observed" wave length can most readily be attributed to nonplanarity of the cisoid diene system. This has in fact been experimentally deter-

mined by X-ray analysis. ${ }^{44}$ From models, the nonplanarity of a similar system, X , is about 40° (the system is rather flexible), and the observed vapor phase wave length ${ }^{28}$ is $212 \mathrm{~m} \mu$ (calculated from Table I adding $10 \mathrm{~m} \mu$ for substituents, $222 \mathrm{~m} \mu$). The addition of a double bond extending conjugation should raise the value to $232 \mathrm{~m} \mu$, which agrees with the corresponding value for vitamin $D_{2}, 230 \mathrm{~m} \mu$. In the corresponding steroidal triene the geometry of the double bonds is fixed and essentially planar; and the "observed" value agrees well with that calculated for the planar IIId system.

In tachysterol, commonly written as $\mathrm{A},{ }^{41,45}$ the stereochemistry of the triene system was assumed to be that of IIIc on the basis of spectral evidence indicating a 3,4-trans configuration, ${ }^{43}$ and the high degree of reactivity in the addition of citaconic anhydride. ${ }^{46}$ This stereochemistry appears to have been generally

accepted, ${ }^{41,42}$ but interpreting the experimental evidence on the basis of the present work, this assignment of the 1,$2 ; 3,4$ system as cisoid is doubtful. First of all, if the calculated value for IIIc is increased to $268 \mathrm{~m} \mu$ (correcting for the systematic cis-diene error), the agreement with the "observed" spectra of the cholestatrienes, whose triene systems are unambigously IIIc, is

[^6]quite good. But the corresponding value for tachysterol, $241 \mathrm{~m} \mu$, is now considerably farther from agreement than indicated in Table III, and in fact the disagreement between these values is so severe that it is concluded that tachysterol does not have the conformation assigned earlier. If, however, the 3.4-configuration is trans, the observed spectrum is in excellent agreement with that calculated for IIIa. The ease of DielsAlder addition, dependent on the energy difference between the ground and transition states of the molecule, cannot be taken as evidence against the IIIa system.

If the 3,4 -configuration in tachysterol were cis, models indicate that severe steric repulsions would force one of the terminal olefinic groups to rotate close to 90° out of conjugation. The observed transition wave length is consistent with either a 1,$2 ; 3,4$ - or 3,$4 ; 5,6$ cisoid conjugated diene system. (For the comparable 3,4 -cis-triene synthesized by Inhoffen, et al. ${ }^{39}$ the corrected experimental value is $218 \mathrm{~m} \mu$, similar to a transconjugated diene system.) Such a cis-conjugated diene with the adjacent double bond rotated out of conjugation is also consistent with the observed wave length, but can be ruled out due to the high value of the observed extinction coefficient. It is therefore suggested that tachysterol should be represented not as A, but as B.

Unconjugated Systems.-A number of polyenes are known in which the double bonds are unconjugated in a formal sense, and yet are spatially close enough to interact, as evidenced from their ultraviolet spectra. As typical examples of this kind of structure, we have selected norbornadiene (IV) and barrelene (V).

The interactions between such systems have been treated as charge transfer interactions, ${ }^{47,48}$ but they require no special treatment within the Pariser-Parr framework, where they are treated just as the conjugated polyenes, the only difference being in the numerical values which are used for the integrals involved.

Table V
Calculated and Observed Spectra of Norborvadiene (1V) and Barrelene (V)

Com. pound	Transition	--Calculated----		--Observed---	
		$\lambda, \mathrm{m} \mu$	f	$\lambda, \mathrm{m} \mu$	log
IV	$N \rightarrow V_{1}$	211	0.000	$211{ }^{10}$	$\sim 2.9{ }^{9}$
	$N \rightarrow V_{2}$	196	001	$188{ }^{10}$	$\sim 3.2{ }^{9}$
V	$N \rightarrow V_{1}$	214	000	224°	2.48
	$N \rightarrow V_{2}$	194	056	$198{ }^{\text {a }}$	3.05

a Corrected to gas phase.
Table VI
Calculated and Observed Spectra of Cyclononatriene (VI) and Umbrellaene (VIII)

Compound	and Umbrellaene (VIII)			${ }^{a}-$
	---Calculated-----		Obset ved ${ }^{\text {a }}$	
	$\lambda, \mathrm{m} \mu$	f	$\lambda, \mathrm{m} \mu$	
VI	205	3×10^{-5}	~ 216 (sh)	>3
	171	0.000	212 (sh)	3
	168	0.452	198	4
	164	1.318	<190	Strong
VII	216	0.000	204 (sh)	3.7
	178	0.000	187	4.4
	174	1.013		
	170	0.910		

[^7][^8]Table VII
Molecular Orbitals

θ			χ^{1}	x ${ }^{\text {a }}$	χ^{3}	${ }^{4}$	${ }^{6}$	${ }^{6}$
II	0° and 180°	ϕ_{1}	0.407394	0.577953	0.577953	0.407394		
		ϕ_{2}	-. 577953	- . 407394	. 407394	. 577953		
		ϕ_{3}	-. 577953	407394	407394	-. 577953		
		ϕ_{4}	-. 407394	. 577953	-. 577953	. 407394		
II	30° and 150°	ϕ_{1}	. 405218	. 579481	. 579481	405218		
		ϕ_{2}	-. 579481	-. 405218	405218	579481		
		ϕ_{3}	- . 579481	405218	405218	-. 579481		
		ϕ_{4}	- . 405218	579481	-. 405218	. 579481		
II	60° and 120°	ϕ_{1}	. 445264	549308	. 549308	445264		
		ϕ_{2}	-. 549308	-. 445264	. 445264	. 549308		
		ϕ_{3}	-. 549308	. 445264	445264	-. 549308		
		ϕ_{4}	- . 445264	. 549308	-. 549308	. 445264		
II	85° and 95°	ϕ_{1}	. 490926	. 508912	. 508912	490926		
		ϕ_{2}	-. 508912	- . 490926	. 490926	508912		
		ϕ_{3}	-. 508912	. 490926	. 490926	-. 508912		
		ϕ_{4}	- . 490926	508912	-. 508912	. 490926		
II	90°	ϕ_{1}	. 500000	500000	. 500000	500000		
		ϕ_{2}	-. 500000	-. 500000	500000	500000		
		ϕ_{3}	-. 500000	. 500000	. 500000	-. 500000		
		ϕ_{4}	- . 500000	. 500000	-. 500000	. 500000		
	-	ϕ_{1}	. 250133	. 409300	. 519525	. 519525	0.409300	0.250133
		ϕ_{2}	- . 443755	-. 515720	-. 192650	. 192650	515720	443755
		ϕ_{3}	. 490423	. 257887	- . 439294	-. 439294	257887	490423
		ϕ_{4}	-. 490423	. 257887	. 439294	-. 439294	-. 257887	490423
		ϕ_{6}	. 443755	-. 515720	. 192650	192650	-. 515720	443755
		ϕ_{6}	-. 250133	. 409300	-. 519525	. 519525	-. 409300	250133
IV		ϕ_{1}	. 500000	. 500000	. 500000	. 500000		
		ϕ_{2}	-. 500000	-. 500000	. 500000	. 500000		
		ϕ_{3}	-. 500000	. 500000	. 500000	-. 500000		
		ϕ_{4}	-. 500000	. 500000	-. 500000	. 500000		
V		ϕ_{1}	. 351469	. 351469	. 572411	. 572411	-0.220942	-0.220942
		ϕ_{2}	. 458043	. 458043	-. 075360	-. 075360	. 533402	533402
		ϕ_{3}	-. 408248	-. 408248	. 408248	. 408248	. 408248	408248
		ϕ_{4}	-. 553204	553204	. 419689	- . 419689	- . 133515	133515
		ϕ_{5}	- . 165222	165222	- . 396478	. 396478	- . 561700	561700
		ϕ_{6}	-. 408248	408248	- . 408248	408248	408248	- . 408248
V		ϕ_{1}	. 408248	408248	. 408248	408248	408248	408248
		ϕ_{2}	-. 205367	-. 245146	-. 364616	-. 330117	469982	575262
		ϕ_{3}	-. 439590	- . 522721	. 447648	. 473662	. 091942	049058
		ϕ_{4}	510458	-. 488855	- . 488841	. 510445	-. 021617	-. 021591
		ϕ_{5}	269752	-. 307172	. 307194	-. 269776	-. 576945	576946
		ϕ_{6}	-. 408248	. 408248	-. 408248	. 408248	-. 408248	408248
V		ϕ_{1}	408248	408248	. 408248	. 408248	. 408248	408248
		ϕ_{2}	- 318563	-. 357554	-. 257718	-. 213800	. 576280	571352
		ϕ_{3}	- 481509	- . 453309	. 516638	. 536305	-. 035129	-. 082996
		ϕ_{4}	511603	-. 487545	-. 487527	. 511588	-. 024077	- . 024043
		ϕ_{5}	. 267574	-. 309247	. 309275	-. 267603	-. 576847	. 576849
		ϕ_{6}	-. 408248	. 408248	-. 408248	. 408248	-. 408248	408248
IX		ϕ_{1}	. 249041	433565	. 613153	. 352197	. 433565	249041
		ϕ_{2}	-. 500000	-. 500000	. 000000	. 000000	. 500000	500000
		ϕ_{3}	-. 433565	-. 249041	. 352197	. 613153	-. 249041	-. 433565
		ϕ_{4}	. 433565	-. 249041	-. 352197	. 613153	-. 249041	433565
		ϕ_{5}	- 500000	. 500000	. 000000	. 000000	-. 500000	500000
		ϕ_{6}	-. 249041	. 433565	-. 613153	352197	433565	- . 249041

Norbornadiene has previously been treated by the Pari-ser-Parr method, ${ }^{9,10}$ but with different numerical values for the various quantities. We have obtained numerical quantities for this molecule by the methods described above. The results obtained were in good agreement with the observable portion of the spectrum (Table V). The calculation was next extended to bicyclo [2.2.2]-2,5,7-octatriene (barrelene). ${ }^{49}$ This system is unusual in that the signs of the overlap integrals must be taken into account. Owing to the peculiar

[^9] (1960).
orientation of the π-orbitals, there is no combination of the atomic orbitals which will give a nodeless molecular orbital, and the MO of lowest energy is found to be degenerate, which is also unusual. The calculated values for the $\mathrm{N} \rightarrow \mathrm{V}_{1}$ and $\mathrm{N} \rightarrow \mathrm{V}_{2}$ transitions are given in Table V. The only experimental values for the spectrum which are available give the wave lengths as 239 and $208 \mathrm{~m} \mu$ in ethanol. In the vapor phase these values would probably be reduced to about 224 and 198 $\mathrm{m} \mu$, so the agreement appears to be satisfactory.
The homoconjugated compound tetrahydroacepentylene (umbrellaene, VII) has long been of theoret-

Table Vilil
State Energies, Transition Energies, ayd Oscillator Strengths ${ }^{\text {a }}$

${ }^{a}$ These data for II are given in Table I.
ical interest, and we carried out the calculations for this molecule with the hope that it might be prepared in the future. Subsequently we learned that a synthesis of the compound has actually been accomplished and the experimental spectrum was obtained. ${ }^{50}$ The data are summarized in Table VI. The synthesis of sym-cis,-cis,cis-1,4,7-cyclononatriene (VI) was reported while these calculations were in progress, ${ }^{51,52}$ and because of its close similarity to umbrellaene we also carried out the calculations for this molecule. The results are again included in Table VI. It is difficult to decide whether the agreement between the calculated and observed spectra is good or not, since there appears to be much vibrational structure in the observed spectrum. All that can be said is that no conspicuous disagreement is apparent.

It is concluded that for polyenes which do not possess strongly allowed transitions above $2(0) \mathrm{m} \mu$, calculations such as those in this paper will be of limited predictive value. For other polyenes useful predictions will be possible, subject to certain limitations. The most conspicuous limitation is that cisoid dienes absorb systematically at longer wave lengths than calculated, possibly because their geometry is not quite that assumed, or because of the neglect of diexcited and higher configurations in the configuration interaction

[^10]calculation. Woodward's rules, while of considerable empirical use in their area of applicability have a number of theoretical shortcomings, and appear to work as well as they do because of internal compensating errors. The triplet state calculations leave much to be desired. All of these matters are of practical importance and are now under investigation and will be reported in subsequent papers.

Appendix I

Molecular Geometry,-The molecules considered were placed in a three-dimensional cartesian coordinate system. Known bond lengths and angles were used where available.

$$
\begin{array}{lll}
\mathrm{I}^{53} & r_{12}=1.397 \AA . & \mathrm{C}-\mathrm{C}-\mathrm{C}=120^{\circ} \\
\mathrm{II}^{54} & r_{12}=1.337 \AA . & \mathrm{C}=\mathrm{C}-\mathrm{C}=122.4^{\circ} \\
& r_{23}=1.483 \AA . & \\
\mathrm{IV} \mathrm{~V}^{9} & r_{12}=1.333 \AA . & \mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}=109.1^{\circ} \\
& r_{15}=1.522 \AA . & \mathrm{C}_{1}-\mathrm{C}_{5}-\mathrm{C}_{7}=96.4^{\circ} \\
& r_{67}=1.558 \AA . & \mathrm{C}_{1}-\mathrm{C}_{5}-\mathrm{C}_{4}=102.2^{\circ}
\end{array}
$$

[^11] Tetrahedron, 17. 163 (1962).

Where the geometry is not accurately known, standard bond lengths and angles were used.
IIIa Bond lengths and angles of II
IIIb-e Bond lengths of II, $\mathrm{C}=\mathrm{C}-\mathrm{C}=120^{\circ}$

$$
\begin{array}{ll}
\mathrm{V} \quad r_{12} & =1.337 \AA . \\
& r_{18} \\
& =1.501 \AA .^{65} \\
& r_{23} \\
\text { VI } & r_{23} \\
& =1.337 \AA \AA . \quad \text { (measured from Dreiding models) } \\
& r_{17} \\
=1.501 \AA . \quad \mathrm{C}-\mathrm{C}-\mathrm{C}=\mathrm{C}=120^{\circ} \\
109^{\circ} 28^{\prime}
\end{array}
$$

VII Average measured Dreiding model distances were used. The coordinates were calculated from various groups of measured distances until consistency between calculated and measured values was achieved

IX Bond lengths of II, $\mathrm{C}=\mathrm{C}-\mathrm{C}=120^{\circ}$

Appendix II

Numerical Data.-Selected numerical data for the calculated spectra are given in Tables VII and VIII. ${ }^{56}$ Molecular orbitals were obtained by diagonalizing ma-
(55) D. R. Lide. Jr., Tetrahedron, 17, 125 (1962).
(56) These data for I have been published previously (ref. 1). For the other compounds treated in this paper the nuclear coordinates, atomic and molecular integrals, configuration energies, and configuration interaction elements are available from the authors.
trices of the form

[0	$-\beta_{12}$	$-\beta_{13}$	$-\beta_{1 N}$
$-\beta_{21}$	0	$-\beta_{23}$	$-\beta_{2 \mathrm{~N}}$
$-\beta_{31}$	$-\beta_{32}$		$-\beta_{3 \mathrm{~N}}$

where β is the corresponding number in $\mathrm{H}_{\text {core }}$. For butadiene (II), α was calculated from eq. 18 with the Coulomb penetration integrals ($q: p p$) evaluated according to Parr and Crawford ${ }^{57}$ and ($r: p p$) neglected; eq. 19 was used for the other compounds. The spectroscopic value of 11.080 e.v. ${ }^{58}$ was used for the onecenter two-electron Coulomb repulsion integral γ_{11}, and -11.22 e.v. for the ionization potential W_{c}.

Acknowledgment.-The authors are indebted to Drs. D. D. Ebbing, R. B. Hermann, and H. E. Simmons for helpful discussion of many theoretical problems encountered during the course of this work, and to Mr. B. Gorden and Mr. R. A. Ford for the ultraviolet spectral measurements reported herein, and for the required synthetic work.
(57) R. G. Parr and B. L. Crawford. Jr., J. Chem. Phys, 16, 1049 (1948). These integrals are evaluated using hydrogenic orbitals. Slater orbitals would be more consistent since they are used for the other integrals calcu. lated, but the differences are small. Later calculations of the $N \rightarrow V_{1}$ energy for cis- and trans.II, neglecting penetration integrals, including $(q: p p)$ for Slater orbitals with $(r: p p)$ zero, and including both ($q: p p$) and ($r: p p$). gave results constant to within $3 \mathrm{~m} \mu$ for both isomers.
(58) H. A. Skinner and H. O. Pritchard, Trans. Faraday Soc., 49, 1254 (1953).

[Contribution from the Research Center of the Hercules Powder Co., Wilmington 99, Del.]

The Addition of Acylcobalt Carbonyls to Acetylenes. $\pi-(2,4)$-(Alkeno-4-lactonyl)cobalt Tricarbonyl Derivatives and Their Conversion to 2,4-Pentadieno-4-lactones

By Richard F. Heck
Received February 5, 1964

Abstract

Acylcobalt tetracarbonyls react with substituted acetylenes to forn π-(2,4)-(alkeno-4-lactonyl)cobalt tricarbonyl derivatives. These complexes react with triphenylphosphine, with evolution of carbon monoxide, to form mono(triphenylphosphine) derivatives. The acetylcobalt tetracarbonyl-3-hexyne-triphenylphosphine complex was isolated and characterized. Reactions of the π-lactonyl complexes were investigated. The most significant finding was a new method of synthesizing 2,4 -pentadieno-4-lactones by the reaction of π-lactonyl complexes with dicyclohexylethylamine.

Introduction

Alkyl- and acylcobalt carbonyls react readily with many compounds having unshared electron pairs. Phosphines ${ }^{1,2}$ and phosphites ${ }^{3}$ form acylcobalt tricarbonyl monophosphines or monophosphites. The alkyland acylcobalt carbonyls can react with olefins to form ketones ${ }^{4}$ and with conjugated dienes to form 1-acyl-methyl- π-allylcobalt tricarbonyls. ${ }^{5}$ The present paper is concerned with the reaction of acetylenes with acylcobalt carbonyls.

Many reactions of acetylenes with transition metal carbonyls and their derivatives are known, but there ap-

[^12]pear to be only a few examples of the reaction of alkyl(or acyl)-metal carbonyls with acetylenes. Coffield reported that methylmanganese pentacarbonyl reacted with acetylene at 150° under pressure to produce π-dihydropentalenylmanganese tricarbonyl. ${ }^{6}$ The fate of the methyl group was not determined. Zeiss lias investigated the reactions of various aryl- and alkylchromium compounds and other transition metal alkyls with acetylenes and found that aromatic trimers are formed, sometimes accompanied by products containing two acetylene units and an alkyl ${ }^{7}$ or aryl group from the metal. ${ }^{8}$ Diethylnickel and diphenylacetylene yielded tetraphenylcyclohexadiene as well as hexa-
$$
\text { (6) T. H. Coffield, K. G. Ihrman and W. Burns, ibid, 82, } 1251
$$ (1960).
(7) M. Tsutsui and H. Zeiss, ibid., 81, 6090 (1959).
(8) W. Herwig, W. Metlesics, and H. Zeiss, ibid., 81, 6203 (1959)

[^0]: (1) Paper V'I: N. L. Allinger, L. A. Frieberg. R. B. Hermann, and M. A. Miller, J. Am. Chem, Soc, 85, 1171 (1963)
 (2) This research was supported in part by Grants G. 10346 and G19981 from the National Science Foundation.
 (3) Predoctoral National institutes of Health Fellow, IDivision of General Medical Sciences, 1962-1963.
 (4) H. H. Jaffé and M. Orchin, "Theory and Applications of Ultraviolet Spectroscopy," John Wiley and Sons, Inc., New York, N. Y., 1962.
 (5) L. F. Fieser and M. Fieser, "Steroids." Reinhold Publishing Corp., New York, N. Y., 1959, p. 16
 (6) R. Pariser and R. G. Parr, J. Chem. Phys., 21, 466. 767 (1953).
 (7) R. Pariser, ibid., 24. 250 (1956).
 (8) P. Schiess and A. Pullman, J. chim, phys., 6S, 101 (1956).
 (9) C. F. Wilcox, Jr., S. Winstein, and W. G. McMillan, J. Am. Chem. Soc,; 82, 5450 (1960).
 (10) R. B. Hermann, J. Org. Chem., 27, 441 (1962):

[^1]: (11) E. Hückel, Z. Physik, 70, 204 (1931)
 (12) R. S. Mulliken and C. A. Rieke, Rept. Progr. Phys., 8, 231 (1941).

[^2]: (13) J. C. Slater, Phys, Rev., 36, 57 (1930).
 (14) R. G. Parr and B. L. Crawford, Jr., J. Chem. Phys., 16. 526 (1948).
 (15) (a) R. S. Mulliken, J. Am. Chem. Soc., 72, 4493 (1950); (b) J. Phys. Chem., 86, 295 (1952).
 (16) R. C. Sahni and J. W. Cooley, "Tables for Two-center Two-elec. tron Coulomb Integrals." National Aeronautics and Space Administration Technical Note D.146-II, Washington, D. C., 1960.

[^3]: (18) H. Wynberg, A. DeGroot, and D. W. Davies, Tetrahedron Letters, 1083 (1963).
 (19) R. S. Berry, J. Chem. Phys., 38, 1934 (1963).
 (20) C. M. Moser, J. Chem. Soc., 3455 (1954)
 (21) L. C. Jones, Jr., and L. W. Taylor, Anal. Chem., 27, 228 (1955).
 (22) W. B. Smith and J. I.. Massingill, J. Am. Chem. Soc., 83, 4301 (1961).
 (23) Vapor phase spectra for some of the dienes are available: cyclohexadiene, $250 \mathrm{~m} \mu$ (ref. 37); cyclopentadiene, $23,5 \mathrm{~m} \mu$; and cyclooctadiene, $222 \mathrm{~m} \mu$ (ref. 28)
 (24) E. A. Braude, Chem. Ind. (London), 1557 (1954).

[^4]: (25) Measured fron Dreiding models, accurate to $\pm 5^{\circ}$.
 (26) These values are calculated for solution in hexane (see text).
 (27) Vapor phase.
 (28) Present work (in hexane solvent); ref. 25 gives $238.5 \mathrm{~m} \mu$.
 (29 S. F. Mason, Quart. Rev. (London), 15, 287 (1961).
 (30) A. C. Cope, M. R. Kinter, and R. T. Keller, J. Am. Chem. Soc., 76, 2757 (1954).
 (31) R. W. Fawcett and J. O. Harris, J. Chem. Soc., 2669 (19.54).
 (32) D. F. Evans, ibid., 1735 (1960).
 (33) The empirical reduction of the value of the one- and two.center repulsion integrals at short distances, for example, is a way of including the effect of electron correlations in the calculation. This correlation should be different for the triplet states, however.
 (34) G. S. Hammond and R. S. H. Liu, J. Am. Chem. Soc., 85, 477 (1963).
 (35) J. M. Shackelford, W. A. Michalowicz, and L. H. Schwartzman. J. Org. Chem., 27, 1631 (1962).
 (36) J. C. H. Hwa, P. L. de Benneville, and H. J. Sims, J. Am. Chem. Soc., 82, 2537 (1960).
 (37) H. Schuler, E. Lutz, and G. Arnold, Spectrochim. Acta, 17, 1043 (1961).
 (38) W. C. Price and A. D. Walsh, Proc. Roy. Soc. (London), A185, 182 (1946).

[^5]: (39) H. H. Inhoffen and G. Quinkert, Ber.. 87, 1418 (1954).
 (40) I.. Dorfman, Chem. Rev., 53, 47 (1953).
 (41) R. S. Davidson, P. S. Littlewood, T. Medcalfe, S. M. WaddingtonFeather. D. H. Williams, and B, Lythgoe, Tetrahedron Letters, 21, 1413 (1963).
 (42) Reference 5, p. 145.
 (43) Reference $\overline{5}$, p. 133.

[^6]: (4.) I). Crowfoot and J. D. Dunitz, Nature, 162, 608 (1948); D. C. Hodgkin, M. S. Webster, and J. D. Dunitz, Chem. Ind., (London), 1149 (1957).
 (45) I. H. Inhoffen, K. Bruckner, R. Grundel, and G. Quinkeit, Ber., 87, 1407 (1954)
 (46) K. Alde, and M. Schumacher, Fortschr. Chem. Oyg. Naturstoffe, 10, 74 (1953).

[^7]: ${ }^{a}$ In solvent.

[^8]: (47) H. C. Longuet. Higgins and J. N. Murell, Proc. Phys. Soc. (London), A68, 601 (1955)
 (48) J. Koutecky and J. Paldus, Tetrahedron. Suppl. 2, 201 (1963)

[^9]: (49) H. E. Zimmerman and R. M. Paufler, J. Am. Chem. Soc., 82, 1514

[^10]: (50) R. B. Woodward and T. Fukunaga, unpublished (personal comminnication).
 (51) P. Radlick and S. Winstein, J. Am. Chem. Soc., 85, 344 (1963).
 (52) K. G. Untch, ibid., 85, 345 (1963).

[^11]: (53) A. Almenningen, O. Bastiansen, and L. Fernholt, Kgl. Norske Videnskab. Selskabs Skrifter, No. 3, 1 (1958)
 (54) (a) A. Almenningen, O. Bastiansen, and M. Traetteberg, Acta Chem Scand., 12, 1221 (1958); (b) D. J. Marais, N. Sheppard, and B. P. Stoicheff,

[^12]: (1) R. F. Heck and D. S. Breslow, J. Am. Chem. Soc., 84, 2499 (1962).
 (2) R. F, Heck, ibid., 85. 651 (1963).
 (3) R. F. Heck, ibid., 85, 1220 (1963).
 (4) R, F. Heck, ibid., 85, 3116 (1963).
 (5) R, F. Heck, ibid., 85, 3381 (1963)

